

NCCR-MICS Working Group 2 Sensor and Actuator Platforms

Sensor Network Platform Kit – Proposal Jan Beutel

Results of the WG2 Kickoff Meeting

Many applications have similar requirements.

Periodic, duty-cycled, low-power SNs

Establish a "known-to-work" platform for MICS members

- For "standard" data collection and analysis
- Hardware (+embedded software)
- Software systems (access, infrastructure)
- Support through staffed "product group"

~6 groups interested

Murphy, Decotignie, Baumgartner, Tschudin, Thiele, Grossglauser

MICS Application Requirements

	Pollution	UWB	Wise Net	Deploy ment	Sensor Scope	Odor Source	Perma- forst	Event Detect	Avalan ches	Mobility	Global	Building
# Devices	+++++	no	yes	+++++	+++++	+/-	+/-	+/-	+/-	yes	+/-	yes
Miniaturization	+/-	no	yes	+/-	no	+/-	yes	no	yes	+/-	no	+/-
Autonomy	yes	no	yes	yes	yes	yes	+++++	no	yes	yes	?	yes
Battery power Lifetime	yes	no	+++++	yes	yes	+/-	yes	?	yes	yes	+/-	+++++
Environmental hazards	yes	no	?	no	+++++	yes	+++++	no	+++++	yes	no	yes
Infrastructure access	yes	no	yes	yes	yes	no	yes	?	yes	no	+++++	yes
Performance computation	no	+++++	no	no	no	yes	no	+++++	yes	yes	yes	no
Performance networking	no	yes	no	yes	no	no	no	no	yes	no	yes	no
QoS	no	?	no	yes	no	no	no	no	yes	no	no	+++++
Location	yes	yes	no	+/-	yes	yes	+/-	yes	+++++	+++++	+/-	yes
Sensors	yes	no	no	no	yes	+++++	yes	+++++	yes	yes	?	yes
Testing Deployment	+++++	yes	yes	+++++	yes	yes	yes	yes	yes	yes	+++++	yes

(1) (1) (1) (1) (1) (1)

MICS Application Types

- Periodic, duty-cycled, low-power SNs
 - Pollution, WiseNet, SensorScope, Odor Sources, WaterSense, PermaSense, Smart Buildings, Mobility
- Specialized test systems
 - UWB platform, Event detection, Avalanches
- Tools, testbed infrastructure
 - Deployment

Size vs. Lifetime for Untethered, Outdoor Sensornets

Counter-Example: Non-Sustainable, Non-Scalable

Replace

Replace batteries

Replace node

Screw in board

17 Feb 2006 ETH Zürich

Keep detailed records

	A	В	С	D	E	F
1	INTERIOR	TREE	1,000			
2						
3	Wireless	Mote Deploy	ment - Sonoma Study	Site (Grove of	the Old Tree	es) - 4/27/04
4			•			
5	Mote #	Crown height (m)	General orientation (in relation to main trunk)	Distance from main trunk (m)	Chamber	
6	78	66.5	SW	0.1	28	
7	113	65.5	SW	0.1	28	
8	109	64.5	SW	0.1		
9	118	63.5	SW	0.1	28	
10	105	62.9	SW	0.1	28	
11	129	62	SW	0.1	28	
12	122	61.1	SW	0.1		
13	127	60.1	SW	0.1	28	
14	42	59.1	SW	0.1	28	
15	138	57.8	WSW	0.1	28	
16		56.1	WSW	0.1	28	
17	119	55.2	WSW	3	28	
18	59	5/1 5	NW	Λ	27	

Deploy Quickly

Test the network before you go home

We got <u>820,700</u>

49% yield

Still more than we knew how to handle!

Data Overview

33 motes
44 days
288 samples/day
4 sensors
1,672,704 points

Murphy's law: everything that can go wrong will go wrong

March 16th [Field test 1]

- Gateway casing does not fit
- melted DC/DC converter
- TNOdes antennas fall off
- incorrect wiring of Sensirion sensor

May 4th [Field test 2]

- untested T-MAC version (no development tree!)
- T-MAC looses synch (never use unsigned!)
- debugging nightmare (LEDs off, low data rate)

Summer School, Dagstuhl, September 1st, 2005

WSN Development Reality

It is hard to deploy anywhere beyond 10-20 nodes today.

Coordinated methods and tools are missing today.

Tools for Life-cycle Support

- What are the Hard Parts in Applications?
 - It's NOT in the network/link protocol details!
 - It's in the unexpected.
 - Moving from lab to testbed. Scaling issues
 - Sensors
 - Enclosures
 - Testing, calibration, validation, maintenance, sustainability, etc.
 - I have the data. What's next?
 - Publications, visibility and collaboration

What can be done about it?

Towards a Sensor Network Platform Kit

Lego Mindstorms for WSN Research

- Want a "production ready" not an "experimental" kit
- Fast learning curve
- Standard, known-to-work demo app from sensor to web interface

Technical Requirements

- Lot's of memory for flexible development
- ~1 year lifetime at industrial temperature ratings
- Fast radio (system) wakeup time

Sensor Network Platform Kit – Proposal

Hardware/Software

- Hardware platform (nodes)
- System software support with demo applications
- Debugging/deployment support
- Central DB repository for collecting and analyzing data

Support

- Standard app for environmental sensing (duty-cycled multihop network)
- Tutorial/Documentation
- Installer CDROM
- Staffed support for MICS members

Target Audience

- MICS partners that need platform know-how to jumpstart their research
- Projects that want to share/integrate their work with others
- Projects that target a basic environmental sensing application

Sensor Network Platform Kit - Details

Platform kit based on Tmote Sky and TOS-1.x

- Lowest deep-sleep power consumption
- Fastest wakeup from sleep
- Pretty high data rate
- Possible migration path to TOS-2.x
- Reference SW apps available

Based on USB backbone and BTnode DSN

Backend Infrastructure Access

Based on generic DB, maybe SensorScope or GSN?

Overview:

- Low power platform based on MSP430 and CC2420 radio
- Variant with housing exists (Tmote Invent)
- Memory somewhat limited (10K SRAM, 48K Flash)

Power:

- Lowest deep sleep power (0.0153mW)
- Good power figures on other modes
- Fastest wakeup time on the market (580usec radio startup)
- Active/idle-listening/deep-sleep ratio: 58.5/65.4/0.0153

Sensors:

On-board temperature, humid and light

Political:

- US based research by-product, now commercialized
- Long-term availability/compatibility

Technical:

Best package, power-performance, large and active community base

SNPK – TinyOS-1.x Revisited

- Some really bright ideas (people) at the start, not that revolutionary any more...
- Has been very successful in the community
- Some abstractions are very unfamiliar
- Complicated to use
 - Chaotic build system
 - Many replications
 - Structure often unclear
 - New/working versions not marked
- Core TOS functionality is not that big at all
- TinyOS-2.x
 - VERY PROMISING
 - Beta available
 - Reference apps are still missing

特別的自由國際

SNPK – Goals/Benefits

Goals - Mid-Term

- Fast jump-start for inexperienced MICS partners
- Outsourcing of engineering workload (MICS Staff, Moteiv, AoT, Shockfish)

Goals - Long-Term

 Re-use in parallel projects (PermaSense, WaterSense, Pollution, SensorScope, SBT-Fire, Smart Buildings)

Benefits – Mid-Term

- Short-term availability
- Co-existence with Shockfish/TinyNodes

Benefits – Long-Term

- No reliance on a single platform
- Large community base
- State-of-the-art outsourcing partners enable us to focus on the important tasks
- Possibility to interact in TOS-2.0-WGs
- Make SNPK and our expertise available to public

SNPK – A Bit of Politics

- We cannot run though phase 2 with 5+ groups just copying US research results
- A certain amount of Swiss-Made, Swiss-Ness is required by our sponsor (SNF)
- A "competing" platform lacks in term of community support and collaboration possibilities
- Where is our position?

MICS has to generate "value" in research.

SNPK – Are We Reinventing the Wheel?

TASK – Tiny Application Sensor Toolkit

- Research project
- No ongoing support
- Not for generic applications

TinyOS/BTnut Tutorials

- Require mentoring, instruction
- Important parts (backend, deployment support) are missing

Industry: Developer Kits

- Are an important piece in the puzzle
- Mostly focus on different needs

There seems to be a void for a one-stop-shop SNPK!

SNPK – Incentive for MICS Researchers

- Faster Jumpstart
- Faster Design Cycle
- Less Bugs
- Pooling of Know-how and Experience
- Less Parallelism in Development Projects
- Increased Visibility
- Educational Support
- Collaborative Research
- Support/\$\$ by Additional Central MICS Funding

SNPK - Discussion

Questions for Discussion

- Who would be interested to use a SNPK? long-term? short-term?
 - Mobility (Grossglauser)
 - Smart Buildings (Hovestadt, Thiele, Morari)
 - Deployment (Mattern, Thiele)
- Who can contribute?
 - Deployment-Support Network (Thiele, Mattern)
 - Global Sensor Network (Aberer)
 - WASL Testbed Backend (Grossglauser)
 - TinyNodes, Support (Shockfish)
- Who can staff Support/knows people we can hire?
- Discussion now, decision via mailing list in 2 weeks

MICS WG2 Future Planning

Future Meeting Topics

- Programming Workshop NO
- MICS WG2 Demo Session MAYBE
- Sensors YES
- Enclosures YES
- Data Analysis FUTURE

Next Meeting Date

- Combination with industry forum and research review @ EPFL in May
- Joint meeting with WG1 regarding backend infrstructure (sensor internet)