CW Series 1/4-wave antennas deliver outstanding performance in a rugged and cosmetically attractive package. These antennas feature an FCC Part 15 compliant RP-SMA connector. This simplifies packaging and shipment, allowing for easy field replacement while complying with FCC requirements. A wide variety of matching connectors allows for numerous mounting options. The CW Series comes standard in black, but custom colors are available with a 5,000 piece minimum order.

Features
- Low cost
- Outstanding VSWR
- Excellent performance
- Omni-directional pattern
- Flexible main shaft
- Fully weatherized
- Rugged & damage-resistant
- Part 15 compliant RP-SMA connector
- Available in black or custom colors
- Use with plastic* or metal enclosures

* Requires proximity ground plane

Electrical Specifications
- Center Freq. 868MHz
- Bandwidth 100MHz
- Wavelength 1/4-wave
- VSWR <1.9 typ. at center
- Impedance 50 ohms
- Gain 0.50dBi
- Connector RP-SMA

Electrical specifications and plots measured on 4.00” x 4.00” reference ground plane

Ordering Information
- ANT-868-CW-QW

Product Dimensions

Low cost
Outstanding VSWR
Excellent performance
Omni-directional pattern
Flexible main shaft
Fully weatherized
Rugged & damage-resistant
Part 15 compliant RP-SMA connector
Available in black or custom colors
Use with plastic* or metal enclosures

* Requires proximity ground plane
Azimuth Radiation Pattern

Measurement Antenna Polarity: Vertical
Test Antenna Polarity: Vertical
Maximum Absolute Gain: 0.07dBi

Elevation Radiation Pattern

Measurement Antenna Polarity: Horizontal
Test Antenna Polarity: Horizontal
Maximum Absolute Gain: -0.73dBi

Antenna Test Fixture

ABOUT THIS TEST FIXTURE
The adjoining diagram shows the dimensions of the fixture on which the stated pattern and gain measurements were made. This does not mean that your product must conform to this size or antenna orientation, although it should be recognized that the gain, pattern, and performance may increase or decrease accordingly. Antenna Factor recognizes that our antennas are often used in compact applications with less than ideal ground planes. In some cases, the reference jig is smaller than optimum, particularly with lower-frequency antennas. This is, in part, to more accurately reflect the performance of the antenna in typical real-world applications.