
 Eidgenössische Technische Hochschule Zürich
 Swiss Federal Institute of Technology Zurich
 Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

 Institut für Technische Informatik
 und Kommunikationsnetze
 Computer Engineering and Networks Laboratory

BTnode Application for automated Link

Measurements

Martin Wirz

TERM THESIS

Winter Term 2006/07

Supervisor: Andreas Meier
Professor: Dr. Lothar Thiele

Start Date: 23th of October 2006
Issue Date: 4th of February 2007

Abstract

Link-quality measurements provide insight into the radio-channel behaviour in a

wireless sensor network. We perform packet-error tests in order to measure the link

quality. During such a test, packets are sent from a transmitting node to a receiving

node. Counting the correct received packets allows characterizing the link quality

between the nodes.

In this thesis an application for automated link measurements was implemented on

the BTnode using the Chipcon CC1000 low-power radio. Our application performs

packet-error tests and provides additional tracing functionality to determine packet-

loss time dependency. These tests are controlled by the DSNAnalyzer based on the

DSN infrastructure.

In addition, we provide a short case study comparing the packet-delivery ratio of the

BTnode (CC1000), A80 (CC1020) and the Tmote Sky (CC2420) nodes.

i

ii

Contents

1: Introduction 1

1.1 Wireless Sensor Networks . 1

1.2 Chapters Overview . 1

1.3 Motivation . 2

1.3.1 Motivation for Link-Quality Measurements 2

1.3.2 Preliminary Work . 2

1.3.3 Comparability . 3

1.3.4 Goal of this Thesis . 3

2: Platform 5

2.1 Testbed Overview . 5

2.2 BTnode . 6

2.2.1 Overview . 6

2.2.2 BTnut System Software . 7

2.2.3 Low Power Radio . 7

2.3 Deployment-Support Network . 13

2.4 DSNAnalyzer . 14

3: Concept 17

3.1 Overview . 17

3.2 Link-Quality Measurements . 17

3.2.1 Scenario . 17

3.2.2 Approach . 19

3.2.3 Comparison to the Siemens’ Approach 21

3.3 PET Data Analysis . 21

3.4 Data Collection and Node Control in WSN 22

3.4.1 Client - Target Communication 22

3.4.2 DSN Node - Target Communication 23

4: Implementation 25

4.1 Overview . 25

4.2 Basic Mechanisms of BTnut . 25

iii

Contents

4.2.1 Cooperative Multithreading . 25

4.2.2 Events . 25

4.2.3 Interrupts . 26

4.3 PET Application Framework . 26

4.4 Control Functionality of the PET Application 26

4.5 PET State Machine Thread . 27

4.5.1 PET State Machine . 28

4.5.2 PET Packet Handling . 30

4.6 PET Control Thread . 31

4.6.1 RPC, Parser and Logger . 32

4.7 Schematic Overview of the PET Application 33

4.8 Further Implementation Topics . 35

4.8.1 CC1000 Configuration and Usage 35

4.8.2 Storage of the Bluetooth MAC address in EEPROM 35

5: Verification and Measurements 37

5.1 Application Verification . 37

5.2 Measurements . 38

5.2.1 BTnode . 38

5.2.2 A80 . 41

5.2.3 Tmote Sky . 41

5.3 Conclusion . 41

6: Conclusion 45

6.1 Contributions . 45

6.2 Summary . 45

A: Specification 47

B: Description Task 51

iv

Tables

1-1 CC1000 and CC1020 current consumption comparison 3

2-1 Frequency configuration registers . 12

2-2 Output power settings and typical current consumption at 868Mhz. . . 13

2-3 Functionality of the DSNAnalyzer [12] 15

3-1 PET configuration parameters . 19

3-2 Packet error test enhancements . 20

5-1 Statistical analysis of the the verification test with six BTnodes 38

5-2 BTnode PET configuration . 40

5-3 A80 PET configuration . 41

5-4 Tmote Sky PET configuration . 41

v

Tables

vi

Figures

2-1 Testbed overview . 5

2-2 BTnode rev3 system overview [4] . 6

2-3 CC1000 microcontroller interface . 8

2-4 RSSI voltage output . 9

2-5 Received signal strength vs. RSSI voltage 10

2-6 Frequency parameters . 12

2-7 DSNAnalyzer concept . 14

3-1 DSN virtual connection . 20

3-2 DSN virtual connection . 22

3-3 JSON-RPC client/target sequence diagram 23

4-1 Application Framework . 26

4-2 PET state graph . 29

4-3 TX packet flow . 32

4-4 RX packet flow . 33

4-5 RPC handlink . 33

4-6 Packet error test event handling and inter-thread communication . . . 34

5-1 Visualization of the application’s verification test 39

5-2 PET visualization of the BTnode sensor node 40

5-3 PET visualization of the A80 sensor node 42

5-4 PET visualization of the Tmote Sky sensor node 43

Figures

viii

1
Introduction

”Seamlessly integrating computing with the physical world via sensors and

actuators, physical computing systems promise to give society an improved living

standard, greater security, and unparalleled convenience and efficiency.”

(Stankovic et al. 2005 [16])

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of small, autonomous sensor devices

with wireless networking capability. Because of their small physical dimensions,

these sensor devices, referred to as sensor nodes, can be used to cooperatively mon-

itor physical conditions without disturbing the observed environment.

However, the sensor nodes have to face major resource constraints:

• Only small batteries can be attached to a node

• The radio range is short because of embedded low-power transceivers

• The processing speed is limited

• Only a small amount of memory is available on the nodes

These limitations complicate the design of protocols and applications for WSNs.

1.2 Chapters Overview

The report of this thesis is structured in the following way. In Chapter 2 we present

system specific properties of the platform on which we implemented our application

and introduce the testbed we used for our measurements. In Chapter we deal with

the concept of our application to perform link measurements. In Chapter 4 we pro-

vide specifics on the implementation. Finally, in Chapter 5 we verify our application

and get a first glimpse at measurements performed in a office scenario and compare

the results to other sensor nodes.

1

Chapter 1: Introduction

1.3 Motivation

1.3.1 Motivation for Link-Quality Measurements

Wireless communication is seen as very unpredictable due to the influence of reflec-

tion, fading and interference. All this influences limit the ability to model a wireless

channel accurately for prediction of the radio behavior. In addition, communication

quality can vary dramatically over time and change with slight spatial displace-

ments as stated in [17].

Sensor nodes use low power radio transceivers for data transmission. This amplifies

the unpredictability of the wireless communication channel.

To cope with this problem, reliable and robust communication protocols specially

designed for wireless ad-hoc networks are necessary. To develop and optimize such

protocols, a good understanding of the radio channel behavior is required. Measur-

ing the link quality between different nodes in WSN is one way to determine the

channel characteristics.

1.3.2 Preliminary Work

Siemens Building Technologies (SBT) is currently deploying a WSN with mesh

networking functionality for a fire-detection system. In cooperation with the ETH

Zurich, SBT has developed a platform to perform link measurements in order to in-

vestigate the channel behavior of their wireless sensor node A80 [12].

The A80 sensor node is a proprietary device, developed by SBT. The A80 is based on

a MSP430 microprocessor and has a Chipcon CC1020 [7] UHF radio transceiver. It

is designed for low power applications in the Industrial, Scientific and Medical (ISM)

domain. The CC1020 has a frequency range from 402MHz - 470MHz and 804MHz

- 940MHz and complies with the regulations to allocate the ISM alarm band [13].

This band is exclusive for transmitting alarm message and requires channel spacing

modulation of 25kHz and transmit power of at most 10mW with a duty cycle less

than 0.1%.

For alarm applications, like the SBT fire-detection system, operating in this narrow

frequency band is to advantage because of regulation.

One drawback of narrow-band systems are that their radio requires more time to

calibrate to a certain frequency. A short calibration time however is crucial in time

critical protocols.

A second drawback of narrow-band systems is the energy requirement. The CC1020

has a current consumption of 19.9mA in RX mode and 20.5mA in TX mode at

0dBm. This is significantly higher than the consumption of the comparable Chip-

con CC1000 [6] transceiver that also operates in the ISM band at 868Mhz but is

not allowed to use the alarm channel due to its broader channel spacing of 500kHz.

Table 1-1 gives a comparison of the energy consumption between the CC1000 and

the CC1020 transceiver.

The CC1000 is mainly targeted for very low power applications which are needed in

battery-operated systems requiring 3 years or more of battery lifetime.

2

1.3. Motivation

Operating at 868 MHz CC1000 CC1020

Minimum channel spacing 500kHz 25kHz

Current consumption in RX mode 9.6mA 19.9mA

Current consumption in TX mode at 0dBm 16.8mA 20.5mA

Table 1-1: CC1000 and CC1020 current consumption comparison

1.3.3 Comparability

A system to investigate the link behavior in wireless sensor networks was developed

by SBT and is already in use. With this testbed, the Cipcon CC1020 transceiver

implemented on the A80 node has been investigated.

In a next step, one is interested in comparing the link quality of the CC1020 to the

CC1000 using the same measurement method and the same platform.

1.3.4 Goal of this Thesis

The goal of this thesis is to develop an application on the BTnode sensor node that

allows automated link-quality measurements in order to investigate the Chipcon

CC1000 radio. These link-quality measurements should be controllable with the

DSNAnalyzer based on the DSN infrastructure.

3

Chapter 1: Introduction

4

2
Platform

2.1 Testbed Overview

This chapter introduces the testbed we set up to perform link-quality measure-

ments. A complete overview is given in Figure 2-1. In the next sections, all elements

will be presented. In a first step, we focus on the sensor node on which we are go-

ing to implement our application. We will highlight the main components and their

specifications. Then, with the DSN, we introduce a wireless cable replacement sys-

tem able to control and monitor sensor nodes in a WSN. Finally, to retrieve and

analyse the measurement data, a software running on top of the DSN will be pre-

sented.

Figure 2-1
Testbed overview: The DSN is a background service providing a virtual connection from a

host computer to each sensor node. [12]

5

Chapter 2: Platform

2.2 BTnode

We intend to implement our application on the BTnode sensor node. The next sec-

tions introduce major hardware components with focus on communication features

coming into operation in our application.

2.2.1 Overview

The BTnode is a small autonomous wireless communication and computing plat-

form developed at the ETH Zurich by the Computer Engineering and Networks

Laboratory (TIK) and the Research Group for Distributed Systems. It serves as a

demonstration and prototyping platform for research in mobile, ad-hoc and distrib-

uted sensor networks.

An overview of the system is given in Figure 2-2.

Figure 2-2
BTnode rev3 system overview [4]

The BTnode features two different radios: The Zeevo ZV4002 Bluetooth system and

the Chipcon CC1000 low-power radio [6]. The two radios are controlled by an Atmel

Atmega128 [5] microcontroller.

The Atmega128 is an 8-bit RISC microcontroller running at frequencies up to 8MHz.

Most instructions are executed in a single clock cycle. On the BTnode, the system

clock is generated by an external 7.3728MHz crystal oscillator. The Atmega128 pro-

vides 128kB in-system reprogrammable flash memory, 4kB EEPROM and 4kB in-

ternal SRAM. An addition of 240kB external SRAM is available on the BTnode.

The integrated peripherals include general purpose I/O pins, several 10-bit ADC in-

puts, JTAG, serial peripheral interface (SPI), two-wire serial interface (TWI1) and

two universal asynchronous receiver transmitters (UART).

On the BTnode, the ATmega128 is connected over the second UART to the Bluetooth

module. The first UART is available to applications. It is commonly used as debug

and control interface using standard terminal emulator software.

The CC1000 transceiver is connected over SPI to the ATMega128. A detailed de-

scription is given in 2.2.3.

6

2.2. BTnode

2.2.2 BTnut System Software

The BTnode runs with the BTnut system software [1], an expansion of Nut Operat-

ing System [9]. Nut/OS is an intentionally simple open source real-time operating

system designed for embedded device development. Its key features include:

• Cooperative multithreading

• Event handling

• Periodic and one-shot timers

• Dynamic heap memory allocation

• Interrupt driven streaming I/O

The system is highly configurable and, with the BTnut system software, has been

extended to provide BTnode specific drivers and libraries such as a Bluetooth stack

and several communication protocols. BTnut provides an almost complete C stan-

dard library. This makes it possible to use native ANSI C for code development on

the BTnode platform.

2.2.3 Low Power Radio

2.2.3.1 Overview

Besides the Bluetooth radio, the BTnode provides the low-power radio transceiver

Chipcon CC1000. The CC1000 is a single-chip UHF transceiver designed for very

low power and very low voltage wireless applications. The radio is intended for the

ISM and SRD (Short Range Device) frequency bands at 315, 433, 868 and 915 MHz.

Most operating parameters can be programmed via a serial bus interface. In combi-

nation with a microcontroller, the CC1000 becomes a highly flexible RF transceiver.

Features of the radio include:

• Frequency selectable from 300-1000 MHz in steps of 250 Hz

• -110dBm sensitivity (at 2.4kBaud)

• Programmable output power from -20 to 10dBm (frequency dependent)

• Low supply voltage (2.1V to 3.6V)

• RSSI output

• FSK data rate up to 76.8kBaud

• FSK modulation spectrum shaping

• Integrated bit synchronizer

2.2.3.2 Communication with ATMega128

How does the microcontroller and the CC1000 communicate with each other?

In transmitting mode, the CC1000 receives data bytes from the ATmega128,

modulates this signal onto an electromagnetic wave and transmits it into space.

In receiving mode, the procedure works the other way round. The radio receives an

electromagnetic wave, demodulates it and decodes the signal. This digital signal is

7

Chapter 2: Platform

then interpreted as a byte-stream and forwarded to the microcontroller.

The microcontroller itself is able to receive data bytes from the radio as well as to

send bytes to radio.

In addition, the microcontroller can configure the CC1000 radio in order to set

frequency, output power and other parameters.

CC1000 Microcontroller Interface

Now, we look a bit closer at the CC1000 interface to communicate with the micro-

controller.

The CC1000 provides three pins for configuration, one pin for data transmission and

one pin for the clocking. Figure 2-3 shows the interface schemata. PDATA (Program-

ming Data), PCLK (Programming Clock) and PALE (Programming Address Latch

Enabled) are used by the microcontroller to configure the radio. Together they form

the transceiver’s configuration interface.

The bidirectional pin DIO (Data Input/Output) is used for data reception and data

transmission from and to the microcontroller. DCLK (Data Clock) provides the data

timing.

The RSSI/IF pin is connected to the microcontroller’s analog to digital converter. It

is used to measure the received signal strength (see Section 2.2.3.3).

Figure 2-3
CC1000 microcontroller interface providing three configuration pins (PDATA, PCLK and

PALE), one data pin DIO, one clocking pin DCLK and an analog RSSI output pin RSSI/IF.

[6]

ATmega128 Serial Peripheral Interface

The communication between the CC1000 transceiver and the ATmega128 micro-

controller runs over the Serial Peripheral Interface (SPI).

The SPI allows high-speed synchronous data transfer between the ATmega128 and

peripheral devices. The SPI offers a full-duplex data transfer. A big benefit is the

interrupt capability of this interface. After the transmission of every data byte over

SPI, an interrupt occurs. This is crucial since the microcontroller just has to wait

until an interrupt occurs to know that data arrived from an external component e.g.

from the CC1000. After an interrupt occurred, the received data byte is stored in a

register on the microcontroller and can be read.

8

2.2. BTnode

To transmit data from the ATmega128 to the CC1000, one single data byte is stored

in a designated register of the ATmega128. It will automatically be transfered via

SPI to the CC1000 where the data byte will be sent into space. Here too, a SPI

interrupt is triggered signaling the microprocessor to send the next data byte.

2.2.3.3 Received Signal Strength Indicator

Received Signal Strength Indicator (RSSI) is an indication of the received power

level that is measured by the antenna. RSSI is an arbitrary value dependent on

the specific device. Generally, the higher the RSSI level, the stronger the received

signal. RSSI values are intended to be used at the physical and data link layers.

For example some MAC protocols require this indicator to determine whether the

channel is clear to send or if another device is using the channel.

It is possible to convert the RSSI into field energy (in dBm) to make the received

signal strength comparable among different radios.

CC1000 has a built-in received signal strength indicator. When the RSSI function of

the CC1000 is enabled, the chip gives an analog output signal at a the RSSI/IF pin.

The Analog to Digital Converter (ADC) on the Atmega128 can measure the pin’s

output voltage over a resistor and convert it to a digital voltage level.

The measured RSSI output voltage is inversely proportional to the input RF signal

strength. A higher voltage means a lower input RF signal strength. This fact is

illustrated in Figure 2-4

Figure 2-4
The RF signal strength is inversely proportional to the measured RSSI output voltage.[14]

A single analog to digital conversion is started by writing a logical 1 to the ADC

Start Conversion 1-bit register on the microcontroller. This bit stays high as long as

the conversion is in progress and will be cleared as soon as the conversion is com-

pleted. After conversion, the 10 bit digital value is stored in two 8-bit registers and

can easily be accessed.

9

Chapter 2: Platform

To retrieve the signal input power in dBm out of the measured RSSI voltage value,

a simple conversion is needed. As mentioned before, RSSI values are not standard-

ized. Therefore the conversion is different for each device type and highly hardware

dependent. For the Chipcon CC1000 transceiver, a plot of RSSI voltage as a func-

tion of input power is shown in figure 2-5. A good approximation can be achieved by

using the following conversion formulae:

P = −51.3VRSSI − 49.2 [dBm] at 433 MHz

P = −50.0VRSSI − 45.5 [dBm] at 868 MHz

The CC1000 has the capability to detect and distinguish signal strength in a range

from -105dBm to -45dBm.

Figure 2-5
Received signal strength vs. RSSI voltage

2.2.3.4 Transmission Frequency

The transmission frequency of the CC1000 is set by programming the correspondent

configuration registers. There are two frequency words, namely A and B, that can

be programmed with two different carrier frequencies. One of the frequency words

can be used for RX (local oscillator frequency) and the other for TX (transmitting

frequency). This makes it possible to switch very fast between RX mode and TX

mode.The CC1000 uses a Frequency Shift Keying (FSK) modulation scheme. Not

only the carrier frequency fRF can be programmed, but also a frequency separation

fSEP .

Figure 2-6 gives an illustration of all frequency parameters. In this section we

always refer to this illustration.

Calculating the Frequency Parameters

In order to calibrate the radio to a certain frequency, a carrier frequency value FREQ

and frequency separation value FSEP need to be programmed. The following steps

10

2.2. BTnode

show the procedure to calculate these settings. We start by defining some additional

parameters:

fRF: The radio frequency fRF is the carrier frequency. It can be chosen be-

tween 300Mhz and 1000Mhz.

fIF: The intermediate frequency fIF is 150kHz. This value is fix and can not

be changed.

fVCO: fVCO is either the Local Oscillator (LO) frequency fLO in receive mode,

or the f0 frequency in transmit mode.

fSEP: The frequency separation fSEP is the distance in Hz, between lower

and upper FSK frequency.

f0: f0 is the lower FSK frequency.

f1: The upper FSK transmission frequency is given by

f1 = f0 + fSEP

fLO: The LO frequency fLO must be equal to fRF − fIF or fRF + fIF giving

low-side or high side LO injection respectively.

These parameters can’t be stored on the CC1000 directly. The CC1000 needs to

know the values with reference to the internal crystal oscillator clock. Therefor a

transformation need to be done.

1. The reference frequency fref is the crystal oscillator clock frequency fOSC di-

vided by REFDIV, a number between 2 and 15. REFDIV should be chosen that

1.00MHz ≤ fref ≤ 2.40MHz

Thus, the reference frequency fref is given by:

fref =
fosc

REFDIV

2. FSEP is related to the frequency separation fsep. The equation

fsep = fref ·
FSEP

16384

gives the relation. FSEP has to be chosen to fulfill this condition.

Therefore

FSEP =
16385 · fsep

fref

3. The frequency word FREQ can be calculated from:

fVCO = fref ·
FREQ + FSEP · TXDATA + 8192

16384

where TXDATA is 0 or 1 in transmit mode depending on the data bit to be sent.

In receiving mode TXDATA is always 0.

4. The calculated values FREQ, REFDIV and FSEP can be stored in CC1000

registers according to Table 2-1.

11

Chapter 2: Platform

Figure 2-6
Illustration of the frequency parameters in RX and TX mode respectively.

Address Register Name Description

01h FREQ 2A[7:0] FREQ A[23:16] 8 MSB of the frequency control word A

02h FREQ 1A[7:0] FREQ A[15:8] Bit 15 to 8 of the frequency control word A

03h FREQ 0A[7:0] FREQ A[7:0] 8 LSB of the frequency control word A

04h FREQ 2B[7:0] FREQ B[23:16] 8 MSB of the frequency control word B

05h FREQ 1B[7:0] FREQ B[15:8] Bit 15 to 8 of the frequency control word B

06h FREQ 0B[7:0] FREQ B[7:0] LSB of the frequency control word B

07h FSEP1[2:0] FSEP MSB[2:0] 3 MSB of frequency separation control

08h FSEP0[7:0] FREQ LSB[7:0] 8 LSB of frequency separation control

0Ch PLL REFDIC[3:6] Reference divider (4 bit)

Table 2-1: Frequency configuration registers

12

2.3. Deployment-Support Network

2.2.3.4.1 Frequency Setting in ISM Band

With the previously mentioned procedure we are able to set the CC1000 to a desired

frequency. However, it is recommended to use predefined settings for the operating

frequencies to ensure optimal configuration for best sensitivity in receiving mode.

Chipcon offers a tool to generate an optimal setting for a certain radio frequency.

A table with sample settings is given in [6]. (See Section 4.8.1)

2.2.3.5 RF Output Power

The RF output power is programmable and controlled by the CC1000 PA POW reg-

ister. Table 2-2 shows some values for output power and the typical current con-

sumption at this level.

The complete table is given in [6].

Output power (dBm) RF frequency 868 MHz

PA POW (hex) Current consumption (mA)

-20 02 8.6

-15 05 9.3

-10 09 10.1

-5 40 13.8

0 80 16.8

5 FF 25.4

Table 2-2: Output power settings and typical current consumption at 868Mhz.

2.3 Deployment-Support Network

We are now ready to use the BTnode hardware and develop applications. However,

it is infeasible to run distributed applications in a WSN with the lack of a central

control entity. Our application requires such a system. In this section we present

the WSN control platform used in this thesis.

Classic approaches to develop and deploy WSNs use serial cables for reprogram-

ming, testing, monitoring and controlling of the sensor nodes. Although successful

in lab setups this method does not scale very well. When a WSN is getting larger

than just a few nodes, prototyping and surveillance using serial cable connection to

each sensor node is not feasible anymore.

In [11], the Deployment-Support Network (DSN) platform is proposed as a tool for

the deployment of large WSNs. The DSN is a wireless cable replacement that allows

controlling and validation of WSN applications and to monitor arbitrary WSN tar-

get devices in a real world scenario. The DSN provides a virtual connection to each

node in a WSN. Figure 2-1 illustrates the concept of the DSN.

The DSN consists of nodes, referred to as DSN nodes, which are attached to the

investigated sensor nodes, the so-called target nodes. Both, the DSN and the target

13

Chapter 2: Platform

nodes span up an independent wireless network. The DSN network can be consid-

ered as a wireless backbone network. A host, e.g. a personal computer, can be used

to access the DSN by connecting to one of the DSN nodes. With this setup, a target

node can be controlled, monitored and programmed as if it were connected to a host

computer using a cable. In [10] an implementation, referred to as JAWS, of such a

DSN was developed based on the BTnode platform. It uses Bluetooth to construct a

tree-based multi-hop wireless network.

We use the JAWS DSN as a service to run and analyze link measurements in a

WSN.

2.4 DSNAnalyzer

The DSNAnalyzer [12] is a graphical backend software application for the DSN

that allows controlling and monitoring the target nodes over a GUI. Additionally,

the DSNAnalyzer features a system to generate, run and analyze link-quality tests

among target nodes. Table 2-3 shows the functionality of the DSNAnalyzer.

The DSNAnalyzer is in use to evaluate the A80 target node at SBT (See Section

1.3.2). Since we are interested in comparing the BTnode to the A80, it is recom-

mendable to use the same analysis tools. The the DSNAnalyzer fully achieves all

our requirements for link-quality measurements and has therefore been chosen as

the tool to go with. Figure 2-7 illustrates the concept of the DSNAnalyzer. The BTn-

ode targets are connected to the DSN that acts as a wireless cable replacement

providing virtual connections to each node. With the host computer running the

DSNAnalyzer software, we are able to directly communicate with each target node.

Figure 2-7
DSNAnalyzer provides a virtual connection to every target node for link-quality

measurements

14

2.4. DSNAnalyzer

Use Case Description

Create Test The operator creates a test for link-quality measure-

ments which is stored in a text file. This test includes

parameters like the number of packets, the period,

the sending power and the participating Targets.

Execute Test Series Execute several tests one after another by specifying

the tests, their order and an optional delay before

and after the test.

Execute Test The operator executes a test that is specified in a text

file.

Program Target The operator loads a new binary file to a Target and

flashes it.

Program Targets Program several Targets with a new binary.

Control Target Control a Target by setting its power state.

Execute Target Command Execute an arbitrary command on one or a set of tar-

gets.

View Trace The operator loads a trace of events from the DSN-

Server of an external trace file. The events are dis-

played in different representation in several win-

dows.

Analyze Test Result Use charts to display the results of a test includ-

ing the ranges of the signal strength of the correct

received frames, the faulty received frames and the

noise.

Analyze Link Show the quality of a specified link.

Analyze Packet Errors Show detailed information about the time and quan-

tity of frame errors.

Analyze Bit Errors Show detailed information about the time and quan-

tity of bit errors.

Table 2-3: Functionality of the DSNAnalyzer [12]

15

Chapter 2: Platform

16

3
Concept

3.1 Overview

In this chapter, we develop a concept for our Link-Quality Measurement (LQM)

application on the BTnode. We will first state the requirements and then present

our approach.

The first section devotes itself to specify link-quality measurements. In the following

section, we deal with the concept of data analysis and finally, in the last section we

investigate the node-controlling and data-gathering issue in a WSN.

3.2 Link-Quality Measurements

3.2.1 Scenario

Link measurements are a method to gain insight into the radio-channel behavior.

The basic concept is to have one sending and at least one receiving node in a WSN.

The radio of the transmitting node sends data on a certain radio channel whereas

the receiving node is continuously listening to this channel. If data has been de-

tected by the receiver, it is logged and preprocessed for analysis. Additional mea-

surements, such as RSSI, can be recorded for more accurate interpretations. The

measurement analysis should yield to a prediction of the link quality between nodes.

In the following section we will develop a concept for a test procedure to perform

such LQM. This test procedure should run on the testbed described in Chapter 2.

We start by defining the requirements and will later present our own approach.

It is important to define the right measurement methods and to specify what exactly

should be measured in a link-quality test in order to be able to do the right analysis

afterwards.

The very basic concept behind our approach for such link-quality measurements is

that a receiver analyzes and verifies data received from a sender. A fundamental

decision that has to be made is whether to go for bit error statistics or for packet

error statistics for link measurements by analyzing the received packets.

17

Chapter 3: Concept

By performing a Bit Error Test (BET), the sender transmits a sequence of prede-

fined bits. The receiver tries to detect a data stream and hopefully finds the expected

bit sequence. Because of the receiver’s knowledge about the expected bit sequence,

single bit errors can be detected just by comparing the received stream with the ex-

pected sequence. It is even possible to locate a single bit error in the data stream.

With the Packet Error Test (PET) approach one is not interested in detecting each

bit error. Most modern communication protocols are packet oriented. If one bit isn’t

received correctly and can’t be corrected with redundancy, the whole packet is use-

less and considered as defective. The packet has to be discarded. The amount of bit

errors is not important.

Packet error tests are therefore only interested in whether a packet was received

correctly or not. No further byte or even bit investigation of a faulty received packet

is done.

In order to assure the correctness of a received packet, the Cyclic Redundancy

Checksum (CRC) of the the received data is calculated and compared to the CRC

value transmitted with the packet. Cyclic redundancy check is a type of hash func-

tion to generate a checksum, that allows the detection of errors in a packet. If both,

the received and the computed values are identical, then there is a very high proba-

bility that the received data bytes are equal to the sent data and have therefore not

been corrupted on the way from the transmitter to the receiver.

The big advantage coming along with CRC comparison is the flexibility in the packet

structure. Not the packet content itself is being verified on receiver side but a check-

sum. This enables the possibility to add variable data to a packet. Such data could

include the transmitter’s unique hardware address, a sequence number for each

packet and other relevant information.

This additional information makes it possible to set up a tracer:

• With a sequence number it is possible to detect which packets got lost. Without,

it is only possible to say at the end of a test how many packets out of the

total contained errors or did not make it to the receiver. A sequence number

included in every packet allows analyzing the packet losses time dependency

to see whether packet loss occurred in bursts or are randomly distributed over

time.

• The sender ID helps to find out what source the received packet is coming from.

Even if only one transmitting device is specified in a link test, this information

is useful in order to filter the measurements.

With this information, the complete packet flow is traceable. Each packet is uniquely

identifiable.

Obviously, the ability to compute the Bit Error Rate (BER) is not possible with this

method. Thus, one could think of combining BET and PET by investigating a pre-

defined byte sequence within the packet to count bit errors. This would require a

more complex application where the receiver needs to know what packet is expected

next in order to verify that no error occurred in the variable data of the packet. We

did not implement such a system, because we believe that BER isn’t more beneficial

than the Packet Error Rate (PER) in link-quality measurements.

18

3.2. Link-Quality Measurements

We are interested in knowing how many packets did arrive at the receiver and which

packed couldn’t be detected. However, it is also interesting to see under what con-

ditions errors occurred. For such an investigation, additional data need to be mea-

sured and included into the test. In [15] it is stated that RSSI is an important value

to investigate the radio channel behavior.

The test procedure can be extended in a way that if a packet arrives, the receiver

not only checks the correctness of the packet but also measures the channel’s RSSI

value. In fact, two different RSSI values per packet should be determined: One value

measured during the reception and the other shortly after the packet arrived. The

second value is considered as the noise RSSI and gives prediction about the current

noise situation of the channel when no transmission is going on.

3.2.2 Approach

Link-quality tests in WSNs have been performed by SBT and we would like to have

a similar setup using the same methods with identical parameters to compare the

results.

On the other hand, we would like to extend the test method to obtain more useful

results for better interpretation. In the next section, we will first present our own

approach to perform link-quality measurements and then compare it with the way

Siemens measures the link quality.

Test Setup

The link measurement setup consists of one sending and at least one receiving node

in a WSN. Each node is able to change freely between these two functions. It is

therefore possible to run tests in a round-robin scheme where each node is once

transmitter and receiver otherwise.

Node Configuration

We would like to analyze the effect of different radio configurations. Therefore, sev-

eral parameters can be configured. Table 3-1 shows the configuration parameters

and their range.

Parameter Description Range

chan Radio channel 0 - 79

power Transmit power 0 - 27

iter Number of test packets to be sent 1 - 65535

txper Interval between the transmis-

sion of two packets [ms]

100 - 65535

preamb Preamble in 8-bit units 4 - 255

Table 3-1: PET configuration parameters

PET Data Structure

Our attempt lies in setting up a tracer. Therefore, we follow a Packet Error Test

approach. We are not interested in detecting single bit errors. It is sufficient enough

19

Chapter 3: Concept

to identify whether a packet was received correctly or not by comparing CRC values.

The ability to add variable data to a packet allows us to set up a tracer by merging

a sender identification as well as a sequence number into each packet.

Table 3-2 shows the data that is included in each test packet. The packet structure

Data Description Size

Sequence Number Number of the packet in a PET 2 Bytes

Sender ID Unique identification number (2 Least significant

bytes of the Bluetooth MAC address of the BTn-

ode)

2 Bytes

Payload A series of predefined bytes as additional payload 26 Bytes

CRC Packet’s CRC value to detect errors at the re-

ceiver

2 Bytes

Table 3-2: Packet error test enhancements to provide tracer ability

is given in Figure 3-1

+ Bits 0 - 7 Bits 8 - 15 Bits 16 - 23 Bits 23 - 31

0

32

64

96

128

160

192

256 TX ID CRC

PET Payload Bytes (26 Bytes)

TX Seq Nr.

Figure 3-1
Test packet description

PET Transmitter Concept

The transmitter initializes itself with the previously configured parameters and

starts a test. During a test, the transmitter is sending packets with a predefined

packet rate.

In order to transmit such a packet, at first, a preamble sequence is sent directly fol-

lowed by a Start Frame Delimiter (SFD) for synchronizing sender and receiver and

also for signaling the beginning of the packet. Next, the packet is sent byte per byte

according to ??. After the transmission of the 32 bytes, the sender powers down the

radio and waits a certain time before starting to send another test packet. Of course

the preamble sequence as well as the SFD have to be transmitted again for receiver

synchronization.

20

3.3. PET Data Analysis

PET Receiver Concept

The receiver is permanently observing the radio channel. If a preamble sequence

has been detected, the receiver waits until the SFD is registered. This signals the

start of a packet and the receiver begins to record the next 32 bytes to catch the

whole packet. The receiver verifies the obtained packet by CRC comparison.

Just after detecting the SFD, the receiver measures the RSSI value. This values

is the signal strength during reception of a packet. After receiving the packet, the

RSSI is measured again. This value is the signal strength of the noise.

3.2.3 Comparison to the Siemens’ Approach

Siemens does not perform a packet error test but a bit error test for link measure-

ments. Therefore, they can not add a sequence number and a sender ID to their

packet. Siemens sends a frame of 26 predefined bytes and verifies them by com-

parison. There is no need to add CRC since the packet content is known by every

participant in a test.

3.3 PET Data Analysis

In the previous sections we presented the concept of our BTnode application to

perform PETs for link measurements. A further step is now to analyze this huge

amount of date generated by the nodes during a test. In this section we will discuss

what actually need to be analyzed in order to gain the most significant results out

of a test.

To summarize, what we want to do is to trace packets in a WSN and analyze under

what condition they are received correctly.

During a test, packets are sent from a transmitting node to receiving nodes. Each

packet carries a sequence number, a sender ID, a predefined sequence of bytes and

CRC as payload.The RSSI is measured twice for each received packet: during recep-

tion and shortly after to cover the actual noise floor.

We therefore log the following statistical values for later analysis:

Statistical Values of each received Packet

• The sequence number and the sender ID of each correctly received packet, its

RSSI value and the noise value.

• The sequence number and the sender ID of each faulty received packet, its

RSSI value and the noise value.

This information is logged automatically and sent back to the host after each recep-

tion of a packet but can also be deactivated if desired.

Statistical Values of a whole Packet Error Test for each Node

• The total number of correctly received frames

• The total number of faulty received frames

21

Chapter 3: Concept

• The total number of missed frame (The total number sent frames subtracted

by the number of received frames)

This information is logged and sent back to the host upon request after the trans-

mitter has sent all its test packets.

In Section 2.4, the DSNAnalyzer was introduced as a tool for performing and visual-

izing link-quality measurement results. The DSNAnalyzer is capable of processing

the above mentioned data set and provides plotting functionality to draw diagrams

out of the data.

3.4 Data Collection and Node Control in WSN

We would like to have a direct connection to each node in the WSN. It should be

possible to remote control and monitor a target.

3.4.1 Client - Target Communication

To communicate from a host computer with a WSN node, a communication mecha-

nism has to be specified.

The idea is to establish a virtual connection to each node. We use the DSN for con-

nection handling. Further, the DSN, working as a background service, is responsible

for forwarding data streams from the client to the target and vice versa. For the host-

node communication, a client-server protocol is used with the host as client and the

target as server.

Figure 3-2 shows the connection schematics. For the communication between the

Figure 3-2
The DSN establishes a wireless virtual connection from a host computer acting as client to a

WSN node acting as server

DSNAnalyzer and the target, a Remote Procedure Call (RPC) interaction has been

chosen [12].

A simple lightweight RPC protocol is JSON-RPC [2]. JSON is an alternative to XML

for transmitting structured information between client and server. A JSON-RPC

parser does not require lot of resources and the JSON-RPC protocol is slim with less

22

3.4. Data Collection and Node Control in WSN

overhead compared to XML.

JSON-RPC uses requests from the clients that are answered by responses from the

server. A request includes the name of the method, the parameters and an ID. A

response includes the result, an error message and the ID of the request. The exact

data flow from the client to the target with a simple RPC interaction is shown in

Figure 3-3.

Figure 3-3
JSON-RPC client/target sequence diagram

3.4.2 DSN Node - Target Communication

By using an RPC interaction between host and target as mentioned in Section 3.4.1,

the target receives a plain string in JSON-RPC notation from its attached DSN

node. This string can easily be parsed. To send logs back to the host, the target writes

the data in JSON-RPC notation to the standard output stream. It will automatically

find its way to the host.

Framing and stuffing of data is handled by the DSN itself and does not concern us.

23

Chapter 3: Concept

24

4
Implementation

4.1 Overview

In this chapter we cover major implementation topics. We start by explaining some

important mechanisms of the BTnut system software in order to understand the

subtleties of our application. We then provide the basic idea behind the framework

of our application before we focus on implemented key procedures.

4.2 Basic Mechanisms of BTnut

We introduced BTnut system software in Section 2.2.2 and listed its main features.

In this section we give a very short introduction to the most relevant features we

used for developing our application.

4.2.1 Cooperative Multithreading

BTnut supports the usage of multiple threads by switching CPU from the context

of one thread to the context of another thread. This gives the appearance of simul-

taneously running threads. The thread with the highest priority always runs if it is

not waiting for any event or explicitly yielding the CPU. Cooperative multithreading

means, that a running thread is non-preemptive and only stops running if either an

interrupt occurs or if it has to wait for an event.

4.2.2 Events

Threads are running as long as there is something to do. Very often, a thread does

not have to work all the time but instead has to wait for something to happen. BTnut

provides an event queue mechanism. Threads can line-up in such a queue when they

are waiting for an event while other threads or interrupts can post events to these

queues to wake up waiting threads.

25

Chapter 4: Implementation

4.2.3 Interrupts

Even if the running thread is not willing to pass the CPU to another thread, inter-

rupt routines are executed immediately. If an interrupt occurs, an interrupt handler

is called. This handler is similar to a function and has to be programmed by the

developer. However, this handler has restricted access and is not able to execute all

API functions. Interrupts can be disabled if desired.

4.3 PET Application Framework

In this section we present the framework of our application.

For better structure, we split our application into three modules:

• PET module

Run packet error tests, manages packet flow and handles data transmission.

• GATEWAY module

Communicates with the DSNAnalyzer by parsing JSON-RPC commands and

generates log messages.

• CONTROL module

Provides functionality for monitoring and controlling the target and packet

error tests.

The PET module is implemented as a thread providing the flexibility to run multiple

procedures in parallel. The CONTROL module and the GATEWAY module support

the PET module and are together implemented as a second thread. The two threads

are able to communicate with each other. Figure 4-1 illustrates the idea behind our

basic framework.

THREAD ‚PET Statemachine’

PET

THREAD ‚PET Control’

GATEWAY

CONTROL

Figure 4-1
The principle behind the application framework: One thread to run PETs and another

thread for its controlling

We will now step by step extend this framework towards the whole application.

For a first glimpse see Figure 4-6. It is showing an elaborate visualization of our

application including all key elements.

4.4 Control Functionality of the PET Application

In this section we define the functionality of our application to control the target

node using the DSN. We need functions to change the behavior of the target and

26

4.5. PET State Machine Thread

we would like to be able to configure different parameters. This section provides

a rough description of all implemented remote procedures that can be called by

the DSNAnalyzer. For a complete list including description, syntax, parameters and

corresponding log messages see Appendix A.

PET Control Procedures

By calling control procedures, we are able to change the mode of a node. We can set a

node to receiving mode or start sending packet by putting a node into transmission

mode. While being in either receiving or transmitting mode, it is possible to abort a

test with a stop command. To reset a test (not the target node itself), a command to

reinitialize the node is provided.

Command Description

bet.tx on Starts the transmission of packets

bet.rx on Reset the results and start with reception of frames

bet.stop Stop PET

bet.init Sets all parameters to its values

Set Procedures

This procedures allow to change internal PET parameters.

Command Description

set.chan Sets the radio channel to be used

set.power Sets the CC1000 transmit power

set.iter Sets the number of test packets to be sent

set.txper Sets the period test packets are transmitted

set.preamb Sets the preamble in 8-bit units

set.i output Sets the output mask to be used

Get Procedures

Get procedures return data to the DSNAnalyzer. This functions are called to retrieve

the configuration setting or to log PET results after a test.

Command Description

get.betres Logs PET results

get.betpar Logs the PET parameters which are currently set

get.rssi Returns the RSSI value

4.5 PET State Machine Thread

By referring to Figure 4-1, we now deal with the most important module: The PET

module. This module provides all the functionality that is directly related to sending

and receiving data using the CC1000 transceiver. The module is also responsible for

managing the packet flow of the application.

27

Chapter 4: Implementation

4.5.1 PET State Machine

We implemented the packet error test procedure as a state machine with 3 states

An illustration is given in Figure 4-6

• PET_IDLE: Initializing and configuration state

While in PET_IDLE mode, the thread waits for changing to another state. The

configuration of a PET can only be done in this state.

• PET_TRANSMIT: Sending packets

Entering PET_TRANSMIT starts a PET by sending packets according to the

configuration. If the PET finishes, the thread changes back to PET_IDLE state

automatically.

• PET_RECEIVE: Receiving and analyzing packets

If the thread is in PET_RECEIVE state, it is permanently trying to detect

arriving packets. If a packet was received it gets analyzed and the thread tries

to detect the next packet.

Controlling of the PET state machine is implemented in the PET control thread and

explained in Section 4.6. As soon as the PET control thread forces a state change,

the state machine exits the current state and changes into the new one.

The state diagram graph in Figure 4-6 also shows which RPC commands are allowed

to be executed in a state and which force to change state. The PET state machine

thread is all the time in one of the three states. If there is nothing to work off,

the thread yields CPU and lines-up in a queue waiting for reactivation. In fact, the

thread is sleeping most of the time. The thread is only running while sending a

packet in PET_TRANSMIT or while analyzing a received packet in PET_RECEIVE.

The simplified implementation of the state machine thread looks as follows

THREAD(PET_statemachine, arg) {
for(;;) {
switch(statemachine_state){
case PET_IDLE:
NutEventWait(&SIGNAL_BETSM_Do, NUT_WAIT_INFINITE);

break;

case PET_TRANSMIT:
betmac_transmit();

break;

case PET_RECEIVE:
betmac_receive();

break;
}

}
}

28

4.5. PET State Machine Thread

PET_TRANSMIT PET_RECEIVE

PET_IDLE

bet.rx_onbet.stop | bet.init |
„all frames transmitted“

bet.tx_on

bet.init | bet.stop
set.chan | set.power | set.iter | set.preamb | set.txper | set.confset | set.rssi_thr | set.i_output

get.betpar | get.radpar | get.rssi
log.level

bet.rx_on |
get.betres | get.betpar |

get.radpar
log.level

bet.rx_on |
get.betpar | get.radpar |

get.rssi
log.level

bet.stop | bet.init

bet.rx_on

bet.tx_on

Figure 4-2
PET state graph including procedure calls for state transitions and parameter settings

29

Chapter 4: Implementation

4.5.2 PET Packet Handling

Packet handling describes the procedure from assembling a packet by the sender

until statistical analysis on receiver side.

Packet handling is an integral part of the PET module and is therefore implemented

in the PET state machine thread.

In this section we will first introduce the used Media Access Control (MAC) protocol

and then present the implementation of the packet flow trough our application on

sender and receiver side.

4.5.2.1 PET MAC Protocol

MAC protocols directly interact with the radio module and provide an abstraction

layer to upper layer applications to hide the radio handling.

The PET MAC protocol provides only basic functionality:

General Functionality

• Set radio channel

• Set transmission power

• Change radio module between sending and receiving mode

• Reading RSSI values

Sending Functionality

• Assembling packets (Sequence number, Sender ID, additional payload bytes)

• Calculating CRC and add it to the packet

• Sending of the preamble sequence and SFD before transmitting packets

Receiving Functionality

• Receiving bytes from the radio

• Synchronizing receiver and transmitter by detecting preamble sequence and

SFD

• Calculating CRC of the received packet

• Providing packets to the upper layer

The CC1000 is not able to detect a whole packet at once but receives it byte per byte

and forwards each byte to the microcontroller. It is the duty of the MAC protocol

to detect and record packets. It is therefore worth to take a deeper look into how

the MAC protocol detects received bytes and how it announces the recording of a

whole packet. We use hardware interrupts and their dedicated interrupt handler

for this. We implemented an interrupt handler responsible for recording bytes and

announcing the reception of a packet.

The CC1000 radio forwards each received byte over SPI to the microcontroller (See

3.4.1). As soon as a byte arrives at the ATmega128, a SPI hardware interrupt is

triggered. The interrupt handler becomes active, records the byte and checks if the

packet was received completely. If not, the interrupt handler finishes and becomes

30

4.6. PET Control Thread

active again as soon as the next byte was received.

After the complete reception of a packet, the interrupt handler signals an event to

a waiting queue. An enqueued thread wakes up and can process the packet. In our

application, only the PET state machine thread is waiting for this event. The SPI

interrupt is permanently disabled while not being in receiving mode and will be

enabled by changing state to PET_RECEIVE. How this procedure is embedded into

the RX packet flow is described in Section 4.5.2.3.

4.5.2.2 TX PET Packet Flow

Figure 4-3 illustrates the packet flow for transmitting packets. This is identical to

the procedure described in Section 3.2.2. In a first step, the packet is generated by

assembling the sequence number, the sender ID, the predefined bytes and the CRC.

Then, the radio is set to transmission mode and is now ready to send bytes. First, a

preamble sequence is sent followed by the start frame delimiter in order to synchro-

nize the receiver to the sender. Now, the radio starts sending the packet payload.

After sending the last byte, the radio powers down in order not to occupy the com-

munication channel anymore. A log message about the successful transmission is

sent back to the DSNAnalyzer if enabled for this test. This finishes the transmis-

sion of one packet. The thread pauses an arbitrary time before sending the next

packet accordingly.

This procedure is iterated as often as there are packets to send and as long as the

PET state machine is in PET_TRANSMIT state.

4.5.2.3 RX PET Packet Flow

Figure 4-4 illustrates the packet flow for receiving packets. By entering

PET_RECEIVE, the PET state machine thread turns on the radio on and yields it-

self waiting for an event. Meanwhile, the SPI interrupt handler is trying to receive

packets as described in 4.5.2.1. When a packet was completely received, the handler

signals an event to the waiting queue, to wake up the state machine thread. The

thread verifies the received packet and updates the internal statistics. The thread

might send an optional log message about the reception of a packet. Then, the thread

yields and waits for the next event.

4.6 PET Control Thread

The main task of the PET control thread is to receive JSON-RPC commands, parse

them, change PET parameters, control the PET state machine thread and send log

messages.

In order to let this thread control the state of the PET state machine thread, we

implemented an inter-thread communication mechanism:

In order to change state, the PET control thread sets the new state as active and

signals an event to the state machine thread. The state machine thread does not

recognize state changes without signaling because otherwise a resource intensive

polling method would run permanently.

31

Chapter 4: Implementation

Assemble Packet

Set Radio to TX
Mode

Send Preamble
Sequence

Send SFD

Send Packet
Payload

(SeqNr, Pattern,
SenderID, CRC)

Send Log

All packets
sent || PET

State
changed?

Pause

Switch off Radio

Yes No

Figure 4-3
TX packet flow: This procedure is iterated for each packet

4.6.1 RPC, Parser and Logger

The GATEWAY module is implemented in the PET control thread and is responsible

for the communication between the DSNAnalyzer and the CONTROL module.

As stated in Section 3.4.1, we intend to use an RPC interaction for the communica-

tion of our client-server system.

Therefore, the BTnode interprets the received command, executes the correspond-

ing procedure and replies with a log message.

Figure 4-5 shows the procedure of a sample RPC interaction starting with the ar-

rival of a command and ends with sending the corresponding log message.

In addition, there are some special occurrences where logs are sent back to the host

without a request call. Those occurrences are triggered when a packet was sent or

received during a test. These log messages are optional and sending them back to

the DSNAnalyzer can be switched off by an RPC command (See Appendix A). This

is useful in order not to overload the DSN.

SBT has implemented a JSON-RPC parser and a logger that works with on their

A80 node. They kindly provided us with their implementation of the parser and log-

ger allowing to use in our application.

We include the parser in such a way, that our application detects arriving RPC com-

mand coming from the host and triggers an interrupt to call the interrupt handler.

32

4.7. Schematic Overview of the PET Application

Set Radio to RX
Mode

Enable
SPI Interrupt

Verifly Packet

Update Internal
PET Statistics

Send Log Msg

WAIT for
EVENT

PET State changed

Disable
SPI Interrupt

Packet received

Packet
completly
received?

Retrieve Byte
from Radio

MAC Data
Handling

SPI Interrupt

SIGNAL EVENT
Packet received

Yes

Thread 'control'

SIGNAL EVENT
PET State changed

Set new state of
PET Statemachine

Change state:Switch off Radio

Figure 4-4
RX packet flow: The PET state machine thread is waiting until a packet was received or the

control thread changed state

{
 "method": "echo",
 "params": ["Hello World"],
 "id" 5
}

{
 "result": "Hello World",
 "error": null,
 "id" 5
}

JSON Parser RPC Logger

echo(char* str)

Figure 4-5
Procedure of handling an JSON-RPC command: The parser interprets the command and

the RPC part calls the corresponding procedure. Its return value is sent to the logger, where

a message in JSON notation is generated

RPCs are strings received over UART (See 3.4.1). Whenever the target receives a

character from the attached DSN node, an interrupt occurs and the UART interrupt

handler we implemented is called. Our handler buffers the received character and

awakens the control thread to check whether a complete RPC command is stored

in the buffer or if there are still characters to expect. If a command did arrive com-

pletely, the thread parses the RPC and executes the corresponding procedure. After

sending the log messages back to the DSNAnalyzer, the thread yields CPU and en-

ters sleeping mode again.

4.7 Schematic Overview of the PET Application

To sum up, Figure 4-6 illustrates the interaction between the PET state machine

thread and the PET control thread interaction as well as the UART and SPI inter-

rupt handling.

33

C
h

a
p

te
r

4
:

Im
p

le
m

en
ta

ti
o
n

PET Configuration

PET Results

PET Statemachine Control

THREAD ‚PET Statemachine’

PET Frame Description

Radio Configuration

THREAD ‚PET Control’

JSON-RPC Parser Logger

PET Commands

TX

IDLE

RX

SPI Interrupt Handler
(Enabled in RX State only)

Retrieve Byte from Radio

MAC Data Handling

Packet
completly received?

RX Packet
Verification

YES

JSON-RPC
complelty received?

YES

UART Interrupt Handler

Store Character

Receive Char from UART

SPI Interrupt UART Interrupt

GATEWAY

CONTROL

PET

Figure 4-6
Packet error test event handling and inter-thread communication

3
4

4.8. Further Implementation Topics

4.8 Further Implementation Topics

In this section we present several implementation topics that are not directly related

to the core application, but nevertheless important for our application.

4.8.1 CC1000 Configuration and Usage

BTnut provides basic functions to configure and use the CC1000 transceiver.

In 2.2.3.4 we have seen that it is rather tricky to program the Chipcon to a certain

frequency. Additionally, among all frequency settings, just a few are optimized for

best sensitivity. Such frequencies and the corresponding register settings are listed

in the CC1000 data sheet or can be calculated with a tool1 provided by Chipcon. BT-

nut does not provide calculating frequency register configuration out of MHz values.

We therefore decided to implement a look-up table with optimized frequency sets.

This table can easily be modified and extended.

4.8.2 Storage of the Bluetooth MAC address in EEPROM

The ATmega128 microcontroller does not have a unique identification number. How-

ever, this is required according to our PET specification.

The BTnode features a Bluetooth radio. The Bluetooth module provides a unique

48-bit MAC address for every device. We therefore have chosen the last 16 bits of

this address as the number to identify the sender.

We do not want to power up the Bluetooth module at every start-up of the node

because it takes approximately 5 seconds to read the address. Therefore, while boot-

ing, the BTnode checks whether the ID is stored in the EEPROM2 or not. If not, the

BTnode initializes the Bluetooth module, retrieves the address and stores it directly

in

EEPROM.

1CC1000 Optimal Frequency Calculator:

http://www.chipcon.com/files/CC1000 Optimal Frequency Calculator 1 2.xls
2Electronically Erasable Programmable Read-Only Memory (EEPROM), is a non-volatile storage

chip to store small amounts of data.

35

Chapter 4: Implementation

36

5
Verification and Measurements

This chapter does not provide an in-depth analysis of link-quality measurements but

should give a first glimpse and should disclose tendencies in what direction further,

more detailed measurements could go.

5.1 Application Verification

Before we can start using our application to measure the link quality in WSNs, we

have to be sure that our implementation works reliable. This is an important re-

quirement since we want to be sure that packet losses do not occur due to bugs in

our application.

We verified our software and performed a round-robin PET with six BTnodes where

each node sends 1500 packets with full transmission power. In a round-robin PET,

each node is once transmitter and receiver otherwise. With this method it is possible

to measure every link combination among all nodes in a WSN.

We arranged the nodes in a small circle on a table in order to have only a short dis-

tance between. This minimizes the influences of reflection, fading and interference

and allows testing whether our application works reliable.

A round-robin test with six nodes measures 30 different links. A visualization of the

test results is given in Figure 5-1(a). Each bar represents a link and is a plots of

measurement results. Visualized are the amount of correctly received packets, the

number of faulty received packets as well as the number of missed packets.

Table 5-1 shows a statistical analysis of the test whereas the associated histogram

in Figure 5-1(b) illustrates the number of links that correctly received a certain per-

centage of packets.

The test results show that the reception rate is below 100%. Although a packet only

has to overcome a short distance from sender to receiver, external influence cannot

be excluded completely. A verification of our application in an EMC 1 area would

1Electromagnetic compatibility

37

Chapter 5: Verification and Measurements

PET with 30 Links Absolute Percentage [%]

Packets sent per link 1500 100

Minimal received packets 1493 99.5

Maximal received packets 1500 100

Mean value of received packets 1497.5 99.8

Standard deviation 1.9 0.1

Table 5-1: Statistical analysis of the the verification test with six BTnodes

give a more precise conclusion. However, the results of our verification lies within

the accepted tolerance.

5.2 Measurements

Our interest in measuring the link quality goes beyond analyzing packet error tests

performed on a desk. That’s why we investigated the channel behavior in a more

realistic, office-like scenario.

In addition, we want to compare the link quality between the BTnode and other

sensor nodes.

We distributed BTnodes, A80 and Tmote Sky [3] nodes in several offices over the

on the ETH ETZ G floor. At each location, a BTnode, an A80 and a Tmote Sky node

were placed just next to each other in order to have an identical setup for comparable

measurement results. We performed link-quality tests with each sensor node type

separately.

In the next section we present the results of the link measurements of different

sensor nodes.

5.2.1 BTnode

We performed a PET with the settings given in Table 5-2. The location of the targets

is given in Figure 5-2(b) whereas Figure 5-2(a) shows that the link quality among

the nodes vary dramatically. The symmetry along the diagonal axis shows that if

the link from an arbitrary node A to another node B is bad, the link in the other

direction from node B to A is bad as well. This implies symmetric links. The figure

also shows that more isolated nodes have a worse link quality. In particular, node

0063 has only bad link, in both directions.

Another important fact our test revealed is, that a node either receives a very high

percentage of the packages or almost nothing. An abrupt transition divides the

receiving-area from the non-receiving area. This resulted in having two overlapping

clusters in which the included nodes receive almost all packages whereas nodes not

including hardly receive anything. The first cluster consists of the Nodes 0129, 0168

and 0068. The second cluster includes the nodes 0166, 0068, 0252 and 0143.

38

5.2. Measurements

(a) Statistics

(b) Histogram

Figure 5-1
Visualization of the application’s verification test

39

Chapter 5: Verification and Measurements

Parameter Value

Packets per link 1500

Transmitting power (Max. power) 5dBm

Frequency 868MHz

Table 5-2: BTnode PET configuration

(a) Statistics

(b) Target placing

Figure 5-2
PET visualization of the BTnode sensor node

40

5.3. Conclusion

5.2.2 A80

We performed the same test we presented in 5.2.1 with the A80 node. The settings

are given in Table 5-3. The location of the targets is given in Figure 5-3(b).

The link quality among all nodes in the A80 WSN is very good. The percentage

of correctly received packets is almost 100% on all links. Plot (b) in 5-3 shows a

magnification of the bar chart for better visualization.

Parameter Value

Packets per link 1500

Transmitting power

(Max. power)

5dBm

Frequency 434MHz

Table 5-3: A80 PET configuration

5.2.3 Tmote Sky

In addition to the BTnode and the A80, we also present link measurements of the

Tmote Sky sensor node. The Tmote Sky communicates in the 2.4GHz frequency

band using an Cipcon CC2024 radio.

Similar to the BTnode measurements, there is a symmetry along the diagonal axis

identifiable. This implies symmetric links.

Parameter Value

Packets per link 1000

Transmitting power (Max.

power)

0dBm

Frequency 2.4GHz

Table 5-4: Tmote Sky PET configuration

5.3 Conclusion

Recapitulating the conclusions from the previous sections, we can say, that

• the A80 sensor node does not have problems receiving packets in our test

setup.

• the Tmote Sky shows some indications of degrading link quality with distance.

• the BTnode has range limitation and poor links to more isolated nodes. In

addition, the BTnode has a rather sharp transition from being a good link to

being a bad link. The test also shows a tendency towards symmetric links.

A first comparison of the link quality of the BTnode, the A80 and the Tmote Sky

revealed substantial differences in the link quality. However, we only made a few

41

Chapter 5: Verification and Measurements

(a) Statistics

(b) Zoom

(c) Target placing

Figure 5-3
PET visualization of the A80 sensor node

42

5.3. Conclusion

(a) Statistics

(b) Target placing

Figure 5-4
PET visualization of the Tmote Sky sensor node

43

Chapter 5: Verification and Measurements

measurements. It is therefore not possible to provide a profound conclusion. The ob-

servations addressed in this chapter provide hints for further measurements. Such

measurements should include evaluating the effect of small spacial displacement of

a node and the effect of varying the external antenna position.

To retrieve meaningful results from the A80 node, a larger area for placing the nodes

or altering of the transmission power should be considered. It would be interesting

to see if the A80 also has an abrupt transition from the receiving area to the non-

receiving area as the BTnode or if it is more smooth like Tmote Sky’s behavior.

Other measurements could include a larger test setup with more nodes.

44

6
Conclusion

6.1 Contributions

The contribution of this thesis is an application able to perform link measurements

in form of packet error tests on the BTnode. Its main features include

• Configuration and control from a host computer using the DSNAnalyzer

• Analysis of the measurements using the DSNAnalyzer

• MAC protocol to perform packet error tests using the Cipcon CC1000 radio

transceiver

6.2 Summary

At the beginning of this thesis, a great effort was invested to become familiar with

• Embedded application development

• Embedded debugging

• The BTnode platform including BTnut system software and programming of

the Chipcon CC1000 radio

This was very time time-consuming but helped to understand subtleties of the sub-

ject matter and led towards efficient concept design and implementation of our ap-

plication.

After the implementation, a verification showed that the application is working re-

liable and able to measure the link quality. We then performed measurements in an

office-like scenario in order to compare the results with the A80 and the Tmote Sky

sensor nodes. The results revealed major differences between the BTnode and the

A80 regarding packet losses on a link. Detailed measurements are required for an

in-depth analysis of the link quality.

45

Chapter 6: Conclusion

46

A
Specification

47

A
p

p
en

d
ix

A
:
S

p
ec

ifi
ca

ti
o
n

RPC Command

{"method": "<command>", "params": [<params>], "id": <id>}

PET control procedures

Command Description Parameters

bet.tx on Start with transmission of frames None

bet.rx on Reset thest results and start with reception of frames <tsn> Serial number of RX Btnode

bet.stop Stop PET None

bet.init Sets all parameters to ist default values None

Set procedures

Command Description Parameters

set.chan Set the radio configuration set to be used <set>: Radio configuration set which shall be used

set.power Sets the CC1000 transmit power <power>: Transmit power [0-27] See CC1000 data sheet ta-

ble S.29

set.iter Sets the number of test frames to be sent once the transmis-

sion is started

<itr>:Nr. of testframes [0 -65535]

set.txper Sets the period test frames are transmitted <period>:Transmit frame period [100 - 65535ms]

set.pream Sets the preamble in 8-bit units <preamb>: 01010101 seq used as preamble [0 - 255]

set.i output Sets the output mask to be used <i output>:Decimal value of the output mask

Get procedures

Command Description Parameters

get.betres Logs PET results None

get.betpar Logs the PET parameters which are currently set None

get.rssi Returns the RSSI value. None

4
8

i output settings

i_output is a masking to only send designated log messages

The decimal value is generated by converting the bit sequence

Bit Nr Deximal

Bit0=1: Output information for every correct frame received

Bit1=1: Output information for faulty frames received

Bit2=1: Output information on receive frame error

Bit3=1: Output information for every frame transmitted

Bit4=1: Output information when all frames transmitted

Bit5=1: Output information when transmit frame error

Bit6=1: Not yet used

Bit7=1: Not yet used

E.g. if i_output = 0 during a PET, then no log messages are automatically gener-

ated during the test.

This functionality is useful in order not to overloading the DSN if a large amount of

nodes participate in a test.

49

Appendix A: Specification

50

B
Description Task

51

Appendix B: Description Task

Institut für Technische Informatik (TIK)

Wintersemester 2006/07

SEMESTERARBEIT

für

Martin Wirz

Betreuer: Andreas Meier

Ausgabe: 23. Oktober 2006

Abgabe: 4. Februar 2007

BTnode Application for Automated Link Measurements

Einleitung

Ein drahtloses Sensor Netzwerk (WSN—Wireless Sensor Network) besteht aus einer Vielzahl von kleinen
resourcenbeschränkten Knoten welche mit Funkmodul und Sensoren bestückt sind. Diese werden in der
Umwelt (z.B. in einem Haus) verteilt und erstellen möglichst autonom ein Netzwerk. Ein solches Netz
ermöglicht den Knoten Sensor-Messungen auszutauschen und diese Daten gemeinsam zu verarbeiten. Nach
einer Vision von Stankovic et al. [1] soll dies die ’nahtlose Integration von Rechner mit der Umwelt mit Hilfe
von Sensoren und Aktoren ermöglichen’.

In verschiedenen Projekten [2, 3] konnte in den vergangenen Jahren Erfahrungen mit solchen Multihop
Sensor-Netzwerken gemacht werden. Dabei wurde festgestellt, dass eine Vielzahl der Packete nicht bei ihrer
Destination (z.B. Senke) angekommen sind. Ein Grund dafür liegt im kabellosen und daher unsicheren und
schwer einschätzbaren Übertragungskanal, dessen Linkqualität infolge Interferenz und Fading sehr stark
variieren kann. In verschiedenen Forschungsgruppen wurde dieses Verhalten untersucht [4, 5]. Dabei wurde
zum Beispiel festgestellt, dass in einem gewissen Abstand, der sogenannten Grey Area, die Linkqualität bei
sehr kleiner Änderung der Position stark variieren kann.

Für viele Applikationen und Netwerkprotokolle ist eine gewisse Linkqualität notwendig um eine zuverlässige
Funkionalität zu gewährleisten. Im Hintergrund soll dabei eine Applikation stehen die über eine lange Zeit
mit niedriger Datenrate Nachrichten verschickt. Oft ist man mit der vorteilhaften Situation konfrontiert,
dass man aus einer Vielzahl von Links die Zuverlässigsten Auswählen kann. Dabei is es wünschenswert Links
zu benutzen die auch über längere Zeit stabil sind.

Es stellt sich also die Frage, wie man solche zuverlässigen Links auswählen kann. Das sollte möglichst wenig
Zeit und insbesondere wenig Energieresourcen in Anspruch nehmen. Hierzu ist es notwendig weiterführende
Messungen wie in [4, 5] vorzunehmen. So könnte es beispielsweise Sinn machen, das Verhalten auf verschie-
denen Kanälen zu betrachen.

Beim Aufbau eines WSNs ist man mit der Problematik konfrontiert, dass man nicht genau weiss was in
den einzelnen Knoten geschieht. Es wäre zwar prinzipiell möglich zusätzliche Information über das WSN
verschicken, jedoch wird dies höchstwahrscheinlich das Verhalten des Netzwerkes verändern. Zudem kann es
auch gut sein, dass die Kommunikation noch nicht zuverlässig funktioniert, und es deshalb gar nicht erst
möglich ist, Zugang zum Netzwerk und somit den Knoten zu erhalten. Eine Möglichkeit für das Fehlersuchen,
die Datenerfassung wie auch das Softwareupdaten ist, ein so genanntes ‘Deployment Support Network’ (DSN)
[6] zu benutzen. Ein DSN ist ein kabelloses Sekundärnetzwerk und ermöglicht die Entwicklung, das Testen,
und die Validierung von Sensor-Applikationen. Dazu werden die WSN/DSN Knotenpaare gebildet welche

52

mit einem kurzen Kabel verbunden sind. Die DSN Knoten bauen eigenständig ein drahtloses Netzwerk auf
und ermöglichen somit, wie in Abbildung 1 dargestellt, einen einfach Zugang zu den angehängten WSN
Knoten.

In dieser Arbeit soll eine Plattform aufgebaut werden, die ein möglichst autonomes Messen und Analysieren
der Linkqualität des CC1000 [7] auf dem BTnode [8, 9] erlaubt. Dazu soll die Messplatform DSNAnalyser
[10] ausgebaut werden, welche mittels Deployment Support Netzwerk (DSN) [6] solche automatisierte Tests
ermöglicht. Hierzu ist es notwendig auf dem BTnode eine Applikation zu entwickeln, welche die Befehle des
DSNAnalysers versteht und entsprechend ausführt. Je nach der zur verfügung stehender Zeit, soll in einem
zweiten Teil der Arbeit die Messplattform untersucht und validiert werden. So ist es zum Beispiel denkbar,
Linktests in einer EMV-Zelle durchzuführen um jegliche Interferenzen von Aussen auszuschliessen.

sensor node (target)

target network

host controller DSN node

DSN network

Abbildung 1: Die Knoten des Target Netzwerkes sind per Kabel mit den Knoten des ‘Deployment Support
Network’ (DSN) verbunden. Dieses Sekundärnetz erlaubt einen einfachen zugriff auf die Targets, insbesondere
erlaubt es Firmware updates, loggen von Nachrichten sowie das Versenden von Commands and die Targets.

Aufgabenstellung

1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch thematisch fest
[11]. Erarbeiten Sie in Absprache mit dem Betreuer ein Pflichtenheft.

2. Machen Sie sich mit den relevanten Arbeiten im Bereich Sensornetze, Systeme, Linkqualitätsmessungen
sowie Linkqualitätsabschätzung vertraut. Führen Sie eine Literaturrecherche durch. Suchen Sie auch
nach relevanten neueren Publikationen. Vergleichen Sie bestehende Konzepte anderer Universitäten.
Prüfen Sie welche Ideen/Konzepte Sie aus diesen Lösungen verwenden können.

3. Die Applikation soll auf dem BTnode [8] entwickelt werden. Arbeiten Sie sich in die Softwareentwick-
lungsumgebung der Knoten ein. Machen Sie sich mit den erforderlichen Tools vertraut und benutzen
Sie die entsprechenden Hilfsmittel (Versionskontrolle, Bugtracker, online Dokumentation, Mailingli-
sten, Application Notes, Beispielapplikationen). Schauen Sie dazu insbesondere das BTnode Tutorial
[12] und die BTnode Website [9] an.

4. Nehmen Sie das JAWS Deployment-Support Network [6, 9] auf einigen Knoten in Betrieb und testen
Sie dieses auf Zuverlässigkeit und Leistung.

5. Machen Sie sich mit dem DSNAnalyzer [10] vertraut. Nehmen sie dazu die Testumgebung mit Siemens
A80 Knoten sowie Adapterboard und BTnode in Betrieb.

6. Erstellen Sie ein Konzept für die Applikation auf dem BTnode, welche mit Hilfe des DSNAnalysers
automatisierte Linktests durchführt.

7. Setzen Sie dieses Konzept um, d.h. implementieren Sie die Applikation auf dem BTnode.

8. Validieren Sie die erstellte Applikation und Messplattform.

53

Appendix B: Description Task

9. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen Demonstration, sowie mit
einem Schlussbericht.

Durchführung der Semesterarbeit

Allgemeines

• Der Verlauf des Projektes Semesterarbeit soll laufend anhand des Projektplanes und der Meilensteine
evaluiert werden. Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg können Änderungen
am Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über einen PC mit Linux/Windows für Softwareentwicklung und Test. Für die Einhaltung
der geltenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst verantwortlich. Falls damit Probleme
auftauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurzvortrag vor und präsentieren Sie
die erarbeiteten Resultate am Schluss im Rahmen des Institutskolloquiums.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern.

• Sie führen ein Researchtagebuch in welchem sie die Fortschritte täglich protokollieren.

Abgabe

• Geben Sie vier unterschriebene Exemplare des Berichtes, das Researchtagebuch sowie alle relevanten
Source-, Object und Konfigurationsfiles bis spätestens am 4. Februar 2007 dem betreuenden Assistenten
oder seinen Stellvertreter ab. Diese Aufgabenstellung soll im Bericht eingefügt werden.

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten Source- und Objectfiles, Kon-
figurationsfiles, benötigten Directorystrukturen usw. bestehen bleiben. Der Programmcode sowie die
Filestruktur soll ausreichen dokumentiert sein. Eine spätere Anschlussarbeit soll auf dem hinterlassenen
Stand aufbauen können.

Literatur

[1] J. A. Stankovic, I. Lee, A. K. Mok, and R. Rajkumar, “Opportunities and obligations for physical
computing systems.,” IEEE Computer, vol. 38, no. 11, pp. 23–31, 2005.

[2] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin, “Habitat monitoring
with sensor networks,” Commun. ACM, vol. 47, no. 6, pp. 34–40, 2004.

[3] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buonadonna,
D. Gay, and W. Hong, “A macroscope in the redwoods,” in c-sensys05, (New York, NY, USA), pp. 51–63,
ACM Press, 2005.

[4] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense wireless sensor net-
works,” in First Int’l Workshop on Embedded Software (EMSOFT 2001), pp. 1–13, 2003.

[5] N. Reijers, G. Halkes, and K. Langendoen, “Link Layer Measurements in Sensor Networks,” in Proc.
1st Int’l Conf. on Mobile Ad-hoc and Sensor Systems (MASS), Oct. 2004.

[6] J. Beutel, M. Dyer, L. Meier, and L. Thiele, “Scalable topology control for deployment-sensor networks,”
in Proc. 4th Int’l Conf. Information Processing in Sensor Networks (IPSN ’05), pp. 359–363, IEEE,
Piscataway, NJ, Apr. 2005.

[7] Chipcon, CC1000, Single Chip Very Low Power RF Transceiver, April 2002.

54

[8] J. Beutel, O. Kasten, and M. Ringwald, “BTnodes – a distributed platform for sensor nodes,” in Proc.
1st ACM Conf. Embedded Networked Sensor Systems (SenSys 2003), pp. 292–293, ACM Press, New
York, Nov. 2003.

[9] “BTnodes - A Distributed Environment for Prototyping Ad Hoc Networks.”
http://www.btnode.ethz.ch.

[10] P. Oehen, “DSNAnalyzer: Backend for the Deployment Support Network,” Master’s thesis, Computer
Engineering and Networks Lab, ETH Zürich, Switzerland, Sept. 2006.

[11] E. Zitzler, “Studien- und Diplomarbeiten, Merkblatt für Studenten und Betreuer.” Computer Enginee-
ring and Networks Lab, ETH Zürich, Switzerland, Mar. 1998.

[12] J. Beutel, P. Blum, M. Dyer, and C. Moser, “Btnode programming — an introduction to btnut appli-
cations.” Computer Engineering and Networks Lab, ETH Zürich, Switzerland, May 2006.

[13] “NCCR-MICS: Swiss National Competence Center on Mobile Information and Communication Sy-
stems.” http://www.mics.org.

[14] TIK, “Notengebung bei Studien- und Diplomarbeiten.” Computer Engineering and Networks Lab, ETH
Zürich, Switzerland, May 1998.

55

Appendix B: Description Task

56

Bibliography

[1] Btnode website. http://www.btnode.ethz.ch.

[2] Json rpc website. http://www.btnode.ethz.ch.

[3] Moteiv corporation. http://www.moteiv.com.

[4] Btnode rev3 - product brief, April 2005.

[5] Atmel Corporate. ATmega128 Datasheets, 2005.

[6] Chipcon AS. CC1000 Single Chip Very Low Power RF Transceiver Data Sheet,

2.3 edition, 2005.

[7] Chipcon AS. Single Chip Low Power RF Transceiver for Narrowband Systems,

1.8 edition, 2005.

[8] Lukas Winterhalter Daniel Hobi. Large-scale bluetooth sensor-network

demonstrator. Master’s thesis, Swiss Federal Institute of Technology (ETH)

Zurich, 2005.

[9] Egnite Software GmbH. Nut/os rtos for the atmega128.

http://www.ethernut.de/.

[10] L. Meier J. Beutel, M. Dyer and L. Thiele. Scalable topology control for

deployment-sensor networks. Technical report, Computer Engineering and

Networks Lab, ETH Zürich, Switzerland, November 2004. Technical Report

208.

[11] L. Meier M. Ringwald J. Beutel, M. Dyer and L. Thiele. Next-generation de-

ployment support for sensor networks. Technical report, Computer Engineer-

ing and Networks Lab, ETH Zürich, Switzerland, November 2004. Technical

Report 207.

[12] Patrice Oehen. Dsnanalyzer: Backend for the deployment support network.

Master’s thesis, Swiss Federal Institute of Technology (ETH) Zurich, 2006.

[13] OFCOM (Swiss Federal Office of Communications). Radio interfaces regula-

tion, alarms 868.600 - 868.700 mhz, January 2007.

[14] Joe Polastre. Tinyos radio stacks. Presentation at Network Embedded Systems

Technology Winter 2004 Retreat, January 2007.

57

Bibliography

[15] K. Srinivasan and P. Levis. RSSI is Under Appreciated. Proceedings of the

Third Workshop on Embedded Networked Sensors, 2006.

[16] John A. Stankovic, Insup Lee, Aloysius K. Mok, and Raj Rajkumar. Oppor-

tunities and obligations for physical computing systems. IEEE Computer,

38(11):23–31, 2005.

[17] Jerry Zhao and Ramesh Govindan. Understanding packet delivery perfor-

mance in dense wireless sensor networks. ACM SenSys 03, November 2003.

58

